Enter a problem...
Finite Math Examples
Step 1
Step 1.1
Cancel the common factor of .
Step 1.1.1
Move the leading negative in into the numerator.
Step 1.1.2
Factor out of .
Step 1.1.3
Cancel the common factor.
Step 1.1.4
Rewrite the expression.
Step 1.2
Multiply by .
Step 2
Subtract from both sides of the equation.
Step 3
Subtract from .
Step 4
Step 4.1
Factor out of .
Step 4.1.1
Factor out of .
Step 4.1.2
Factor out of .
Step 4.1.3
Factor out of .
Step 4.1.4
Factor out of .
Step 4.1.5
Factor out of .
Step 4.2
Factor.
Step 4.2.1
Factor by grouping.
Step 4.2.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 4.2.1.1.1
Factor out of .
Step 4.2.1.1.2
Rewrite as plus
Step 4.2.1.1.3
Apply the distributive property.
Step 4.2.1.2
Factor out the greatest common factor from each group.
Step 4.2.1.2.1
Group the first two terms and the last two terms.
Step 4.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.2.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 4.2.2
Remove unnecessary parentheses.
Step 5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 6
Step 6.1
Set equal to .
Step 6.2
Solve for .
Step 6.2.1
Add to both sides of the equation.
Step 6.2.2
Divide each term in by and simplify.
Step 6.2.2.1
Divide each term in by .
Step 6.2.2.2
Simplify the left side.
Step 6.2.2.2.1
Cancel the common factor of .
Step 6.2.2.2.1.1
Cancel the common factor.
Step 6.2.2.2.1.2
Divide by .
Step 7
Step 7.1
Set equal to .
Step 7.2
Solve for .
Step 7.2.1
Add to both sides of the equation.
Step 7.2.2
Divide each term in by and simplify.
Step 7.2.2.1
Divide each term in by .
Step 7.2.2.2
Simplify the left side.
Step 7.2.2.2.1
Cancel the common factor of .
Step 7.2.2.2.1.1
Cancel the common factor.
Step 7.2.2.2.1.2
Divide by .
Step 8
The final solution is all the values that make true.
Step 9
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Mixed Number Form: